Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 14 de 14
1.
J Appl Toxicol ; 41(8): 1262-1274, 2021 08.
Article En | MEDLINE | ID: mdl-33269480

In order to reduce exposure to toxic chemicals, the European REACH regulation (1907/2006) recommends substituting toxic molecules with compounds that are less harmful to human health and the environment. Toluene is one of the most frequently used solvents in industries despite its toxicity. The objective of this study is to better understand and compare the toxicity of toluene and its homologues in a bronchial cell model. Thus, human bronchial BEAS-2B cells were exposed to steams of toluene, m-xylene, mesitylene (1,3,5-trimethylbenzene), and benzene (20 and 100 ppm). Exposure was carried out using an air-liquid interface (ALI) system (Vitrocell) during 1 h/day for 1, 3, or 5 days. Cytotoxicity, xenobiotic metabolism enzyme gene expression, and inflammatory response were evaluated following cell exposures. BEAS-2B cell exposure to toluene and its homologues revealed the involvement of major (CYP2E1) and minor metabolic pathways (CYP1A1). A late induction of genes (EPHX1, DHDH, ALDH2, and ALDH3B1) was measured from Day 3 and can be linked to the formation of metabolites. An increase in the secretion level of inflammatory markers (TNF-α, IL-6, IL-8, MCP-1, and GM-CSF) was also observed. In parallel, regulation between inflammatory mediators and the expression of transmembrane glycoprotein mucin MUC1 was also studied. This in vitro approach with ALI system points out the relevance of conducting repeated exposures to detect potential late effects. The difference recorded after cell exposure to toluene and its homologues highlights the importance of substitution principle.


Benzene Derivatives/toxicity , Benzene/toxicity , Bronchi/drug effects , Toluene/toxicity , Xylenes/toxicity , Benzene/administration & dosage , Benzene Derivatives/administration & dosage , Blotting, Western , Bronchi/cytology , Cell Line , Gene Expression/drug effects , Humans , Inflammation/chemically induced , Respiratory Mucosa/cytology , Respiratory Mucosa/drug effects , Toluene/administration & dosage , Xylenes/administration & dosage
2.
J Toxicol Environ Health B Crit Rev ; 23(7): 293-318, 2020 10 02.
Article En | MEDLINE | ID: mdl-32921295

Exposure to fine particulate matter (PM2.5) has been associated with several diseases including asthma, chronic obstructive pulmonary disease (COPD) and lung cancer. Mechanisms such as oxidative stress and inflammation are well-documented and are considered as the starting point of some of the pathological responses. However, a number of studies also focused on epithelial-mesenchymal transition (EMT), which is a biological process involved in fibrotic diseases and cancer progression notably via metastasis induction. Up until now, EMT was widely reported in vivo and in vitro in various cell types but investigations dealing with in vitro studies of PM2.5 induced EMT in pulmonary cells are limited. Further, few investigations combined the necessary endpoints for validation of the EMT state in cells: such as expression of several surface, cytoskeleton or extracellular matrix biomarkers and activation of transcription markers and epigenetic factors. Studies explored various cell types, cultured under differing conditions and exposed for various durations to different doses. Such unharmonized protocols (1) might introduce bias, (2) make difficult comparison of results and (3) preclude reaching a definitive conclusion regarding the ability of airborne PM2.5 to induce EMT in pulmonary cells. Some questions remain, in particular the specific PM2.5 components responsible for EMT triggering. The aim of this review is to examine the available PM2.5 induced EMT in vitro studies on pulmonary cells with special emphasis on the critical parameters considered to carry out future research in this field. This clarification appears necessary for production of reliable and comparable results.


Air Pollutants/toxicity , Epithelial Cells/drug effects , Epithelial-Mesenchymal Transition/drug effects , Particulate Matter/toxicity , Air Pollutants/chemistry , Biomarkers/metabolism , Cell Line , Epithelial Cells/pathology , Humans , In Vitro Techniques/standards , Lung Diseases/chemically induced , Lung Diseases/diagnosis , Lung Diseases/pathology , Particulate Matter/chemistry , Review Literature as Topic , Signal Transduction
3.
J Appl Toxicol ; 40(5): 619-630, 2020 05.
Article En | MEDLINE | ID: mdl-31975422

Exposure to air pollution is associated with increased morbidity and mortality. Once the fine atmospheric particulate matter (FP) is inhaled, some of its compounds can pass through the lungs and reach the bloodstream where they can come into contact with immune cells. Exposure to FP particularly affects sensitive populations such as the elderly. Aging affects the immune system, making the elderly more vulnerable. The project aims to determine the effects of FP exposure on human T cells while looking for biomarkers associated with exposure. Blood samples from 95 healthy subjects in three different age groups (20-30, 45-55 and 70-85 years) were collected to determine a potential age effect. T lymphocytes were isolated to be exposed ex vivo for 72 hours to 45 µg/mL of FP collected in Dunkirk and chemically characterized. Overexpression of the CYP1A1, CYP1B1 and CYP2S1 genes was therefore measured after exposure of the T cells to FP. These genes code for enzymes known to be involved in the metabolic activation of organic compounds such as polycyclic aromatic hydrocarbons detected in the FP sample. T-cell profiling allowed us to suggest a mixed T-helper 1/2 profile caused by exposure to FP. With regard to the influence of age, we have observed differences in the expression of certain genes, as well as an increase in interleukin-4 and -13 concentrations in the elderly. These results showed that exposure of T lymphocytes to FP causes effects on both transcriptomic and cytokine secretion levels.


Air Pollutants/toxicity , Particulate Matter/toxicity , T-Lymphocytes/drug effects , Activation, Metabolic , Adult , Age Factors , Aged , Aged, 80 and over , Cytochrome P-450 CYP1A1/genetics , Cytochrome P-450 CYP1A1/metabolism , Cytochrome P-450 CYP1B1/genetics , Cytochrome P-450 CYP1B1/metabolism , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Cytokines/metabolism , Female , Gene Expression Regulation, Enzymologic , Humans , Male , Middle Aged , Oxidative Stress/drug effects , Particle Size , Pilot Projects , Prospective Studies , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Young Adult
4.
Chemosphere ; 243: 125440, 2020 Mar.
Article En | MEDLINE | ID: mdl-31995888

To date no study has been able to clearly attribute the observed toxicological effects of atmospheric particles (PM) to a specific class of components. The toxicity of both the organic extractable matter (OEM2.5-0.3) and non-extractable matter (NEM2.5-0.3) of fine particles (PM2.5-0.3) was compared to that of PM2.5-0.3 in its entirety on normal human epithelial bronchial BEAS-2B cells in culture. The specific effect of the quasi-ultrafine fraction (PM0.3) was assessed, by comparing the responses of cells exposed to the PM2.5-0.3 and PM0.3 organic extractable matter, OEM2.5-0.3 and OEM0.3 respectively. Chemically, PAH, O-PAH, and N-PAH were respectively 43, 17, and 4 times more concentrated in PM0.3 than in PM2.5-0.3, suggesting thereby a predominant influence of anthropogenic activities and combustion sources. BEAS-2B cells exposed to PM2.5-0.3, NEM2.5-0.3, EOM2.5-0.3 and OEM0.3 lead to different profiles of expression of selected genes and proteins involved in the metabolic activation of PAH, O-PAH, and N-PAH, and in the genotoxicity pathways. Specifically, OEM0.3 was the most inducer for phase I and phase II enzymes implicated in the metabolic activation of PAH (AHR, AHRR, ARNT, CYP1A1, CYP1B1, EPHX-1, GSTA-4) thereby producing the highest DNA damage, felt by ATR and, thereafter, a cascade of protein phosphorylation (CHK1/CHK2/MDM2) closely related to the cell cycle arrest (P21 and P53 induction). This study underlined the crucial role played by the organic chemicals present in PM0.3. These results should be considered in any future study looking for the main chemical determinants responsible for the toxicity of ambient fine PM.


Air Pollutants/toxicity , Epithelial Cells/drug effects , Particulate Matter/toxicity , Air Pollutants/analysis , Bronchi/cytology , Cell Line , DNA Damage , Humans , Organic Chemicals/toxicity , Particle Size , Particulate Matter/analysis
5.
Environ Pollut ; 254(Pt A): 112933, 2019 Nov.
Article En | MEDLINE | ID: mdl-31382213

Exposure to fine atmospheric Particulate Matter (PM) is one of the major environmental causes involved in the development of inflammatory lung diseases, such as chronic obstructive pulmonary disease (COPD) or asthma. When PM is penetrating in the pulmonary system, alveolar macrophages represent the first line of defense, in particular by triggering a pro-inflammatory response, and also by their ability to recruit infiltrating macrophages from the bone marrow. The aim of this in vitro study was to evaluate the gene expression and cytokine production involved in the toxicological and inflammatory responses of infiltrating macrophages, as well as the Extracellular Vesicles (EVs) production, after their exposure to PM. The ability of these EVs to convey information related to PM exposure from exposed macrophages to pulmonary epithelial cells was also evaluated. Infiltrating macrophages respond to fine particles exposure in a conventional manner, as their exposure to PM induced the expression of Xenobiotic Metabolizing Enzymes (XMEs) such as CYP1A1 and CYP1B1, the enzymes involved in oxidative stress SOD2, NQO1 and HMOX as well as pro-inflammatory cytokines in a dose-dependent manner. Exposure to PM also induced a greater release of EVs in a dose-dependent manner. In addition, the produced EVs were able to induce a pro-inflammatory phenotype on pulmonary epithelial cells, with the induction of the release of IL6 and TNFα proinflammatory cytokines. These results suggest that infiltrating macrophages participate in the pro-inflammatory response induced by PM exposure and that EVs could be involved in this mechanism.


Air Pollutants/toxicity , Epithelial Cells/metabolism , Extracellular Vesicles/metabolism , Macrophages, Alveolar/metabolism , Particulate Matter/toxicity , Air Pollutants/metabolism , Cell Line , Cytokines/metabolism , Gene Expression/drug effects , Humans , Lung/metabolism , Lung Diseases/chemically induced , Oxidative Stress , Particle Size , Particulate Matter/metabolism , Tumor Necrosis Factor-alpha/metabolism
6.
Toxicol In Vitro ; 58: 110-117, 2019 Aug.
Article En | MEDLINE | ID: mdl-30910524

Toxicity of toluene and by-products formed during its catalytic oxidative degradation was studied in human bronchial BEAS-2B cells repeatedly exposed. BEAS-2B cells were exposed using an Air-Liquid Interface (ALI) System (Vitrocell®) for 1 h per day during 1, 3 or 5 days to gaseous flows: toluene vapors (100 and 1000 ppm) and outflow after catalytic oxidation of toluene (10 and 100%). After exposure to gaseous flow, cytotoxicity, inflammatory response and Xenobiotic Metabolism Enzymes (XME) gene expression were investigated. No significant cytotoxicity was found after 5 days for every condition of exposure. After cells exposure to catalytic oxidation flow, IL-6 level increased no significantly in a time- and dose-dependent way, while an inverted U-shaped profile of IL-8 secretion was observed. XME genes induction, notably CYP2E1 and CYP2F1 results were in line with the presence of unconverted toluene and benzene formed as a by-product, detected by analytical methods. Exposure to pure toluene also demonstrated the activation of these XMEs involved in its metabolism. Repeated exposure permits to show CYP1A1, CYP1B1 and CY2S1 expression, probably related to the formation of other by-products, as PAHs, not detected by standard analytical methods used for the development of catalysts.


Air Pollutants/toxicity , Toluene/toxicity , Air Pollutants/chemistry , Aluminum Oxide/chemistry , Catalysis , Cell Culture Techniques , Cell Line , Cell Survival/drug effects , Cobalt/chemistry , Cytochrome P-450 Enzyme System/genetics , Gene Expression Regulation/drug effects , Humans , Industrial Waste , Interleukin-6/metabolism , Interleukin-8/metabolism , Oxidation-Reduction , Toluene/chemistry , Volatile Organic Compounds/chemistry , Volatile Organic Compounds/toxicity
7.
J Environ Sci (China) ; 71: 168-178, 2018 Sep.
Article En | MEDLINE | ID: mdl-30195675

Particulate matter in ambient air constitutes a complex mixture of fine and ultrafine particles composed of various chemical compounds including metals, ions, and organics. A multidisciplinary approach was developed by studying physico-chemical characteristics and mechanisms involved in the toxicity of particulate atmospheric pollution. PM0.3-2.5 and PM2.5 including ultrafine particles were sampled in Dunkerque, a French industrialized seaside city. PM samples were characterized from a chemical and toxicological point of view. Physico-chemical characterization evidenced that PM2.5 comes from several sources: natural ones, such as soil resuspension and marine sea-salt emissions, as well as anthropogenic ones, such as shipping traffic, road traffic, and industrial activities. Human BEAS-2B lung cells were exposed to PM0.3-2.5, or to the Extractable Organic Matter (EOM) of PM0.3-2.5 and PM2.5. These exposures induced several mechanisms of action implied in the genotoxicity, such as oxidative DNA adducts and DNA Damage Response. The toxicity of PM-EOM was higher for the sample including the ultrafine fraction (PM2.5) containing also higher concentrations of polycyclic aromatic hydrocarbons. These results evidenced the major role of organic compounds in the toxicity of PM.


Air Pollutants/toxicity , DNA Damage , Mutagenicity Tests , Particulate Matter/toxicity , Cell Line , Humans , Lung
8.
Exp Gerontol ; 110: 125-132, 2018 09.
Article En | MEDLINE | ID: mdl-29860068

BACKGROUND: Classified as carcinogenic to humans by the IARC in 2013, fine air particulate matter (PM2.5) can be inhaled and retained into the lung or reach the systemic circulation. This can cause or exacerbate numerous pathologies to which the elderly are often more sensitive. METHODS: In order to estimate the influence of age on the development of early cellular epigenetic alterations involved in carcinogenesis, peripheral blood mononuclear cells sampled from 90 patients from three age classes (25-30, 50-55 and 75-80 years old) were ex vivo exposed to urban PM2.5. RESULTS: Particles exposure led to variations in telomerase activity and telomeres length in all age groups without any influence of age. Conversely, P16INK4A gene expression increased significantly with age after exposure to PM2.5. Age could enhance MGMT gene expression after exposure to particles, by decreasing the level of promoter methylation in the oldest people. CONCLUSION: Hence, our results demonstrated several tendencies in cells modification depending on age, even if all epigenetic assays were carried out after a limited exposure time allowing only one or two cell cycles. Since lung cancer symptoms appear only at an advanced stage, our results underline the needs for further investigation on the studied biomarkers for early diagnosis of carcinogenesis to improve survival.


Aging , Air Pollution/adverse effects , Carcinogenesis/chemically induced , Epigenesis, Genetic , Adult , Aged , Aged, 80 and over , Air Pollutants/analysis , Cyclin-Dependent Kinase Inhibitor p16/genetics , DNA Methylation , DNA Modification Methylases/genetics , DNA Repair Enzymes/genetics , Female , Gene Expression Regulation, Neoplastic , Genetic Markers , Humans , Leukocytes, Mononuclear/metabolism , Male , Middle Aged , Particulate Matter/adverse effects , Promoter Regions, Genetic , Telomerase/metabolism , Telomere Shortening , Tumor Suppressor Proteins/genetics
9.
Environ Pollut ; 235: 514-524, 2018 Apr.
Article En | MEDLINE | ID: mdl-29324381

The contribution of diesel exhaust to atmospheric pollution is a major concern for public health, especially in terms of occurrence of lung cancers. The present study aimed at addressing the toxic effects of a repeated exposure to these emissions in an animal study performed under strictly controlled conditions. Rats were repeatedly exposed to the exhaust of diesel engine. Parameters such as the presence of a particle filter or the use of gasoil containing rapeseed methyl ester were investigated. Various biological parameters were monitored in the lungs to assess the toxic and genotoxic effects of the exposure. First, a transcriptomic analysis showed that some pathways related to DNA repair and cell cycle were affected to a limited extent by diesel but even less by biodiesel. In agreement with occurrence of a limited genotoxic stress in the lungs of diesel-exposed animals, small induction of γ-H2AX and acrolein adducts was observed but not of bulky adducts and 8-oxodGuo. Unexpected results were obtained in the study of the effect of the particle filter. Indeed, exhausts collected downstream of the particle filter led to a slightly higher induction of a series of genes than those collected upstream. This result was in agreement with the formation of acrolein adducts and γH2AX. On the contrary, induction of oxidative stress remained very limited since only SOD was found to be induced and only when rats were exposed to biodiesel exhaust collected upstream of the particle filter. Parameters related to telomeres were identical in all groups. In summary, our results point to a limited accumulation of damage in lungs following repeated exposure to diesel exhausts when modern engines and relevant fuels are used. Yet, a few significant effects are still observed, mostly after the particle filter, suggesting a remaining toxicity associated with the gaseous or nano-particular phases.


Air Pollutants/toxicity , Biofuels/toxicity , Toxicity Tests , Vehicle Emissions/toxicity , 8-Hydroxy-2'-Deoxyguanosine , Animals , DNA Damage/physiology , Deoxyguanosine/analogs & derivatives , Deoxyguanosine/metabolism , Lung/chemistry , Oxidative Stress/physiology , Rats , Vehicle Emissions/analysis
10.
Environ Sci Pollut Res Int ; 24(23): 18782-18797, 2017 Aug.
Article En | MEDLINE | ID: mdl-28620855

In this work, the main objectives were to assess the mutagenic and genotoxic effects of fine particulate matter collected in an industrial influenced site in comparison with a non-industrial influenced one (rural site) and to relate the particulate matter (PM) composition to the observed genotoxic effects. At the industrial influenced site, higher concentrations of phosphates, trace metals, and polycyclic aromatic hydrocarbons (PAHs) in particles could be related to the contributions of quarries, fertilizer producer, cement plants, and tires burning. Gasoline and diesel combustion contributions were evidenced in particles collected at both sites. Particles collected under industrial influence showed a higher mutagenic potential on three tested strains of Salmonella typhimurium (TA98, YG1041, and TA102), and especially on the YG1041, compared to particles from the rural site. Furthermore, only particles collected in the vicinity of the industrial site showed a tendency to activate the SOS responses in Escherichia coli PQ37, which is indicative of DNA damage as a result of exposure of the bacteria cells to the action of mutagenic samples. The mutagenicity and genotoxicity of the industrial PM2.5-0.3 particulates may be attributed to its composition especially in organic compounds. This study showed that proximity of industries can affect local PM composition as well as PM genotoxic and mutagenic potential.


Air Pollutants/toxicity , DNA Damage , Environmental Monitoring/methods , Industrial Development , Mutagens/toxicity , Particulate Matter/toxicity , Air Pollutants/analysis , Air Pollutants/chemistry , Escherichia coli/drug effects , Escherichia coli/genetics , Lebanon , Mutagenicity Tests , Mutagens/analysis , Mutagens/chemistry , Particle Size , Particulate Matter/analysis , Particulate Matter/chemistry , Salmonella typhimurium/drug effects , Salmonella typhimurium/genetics , Surface Properties
11.
Int J Hyg Environ Health ; 220(2 Pt B): 445-454, 2017 04.
Article En | MEDLINE | ID: mdl-28063900

Cigarette smoking is a habit that has spread all over the world and is a significant risk factor for many diseases including cardiovascular disease, chronic obstructive pulmonary disease (COPD), asthma and lung cancer. Evaluation and understanding of tobacco health effects are of major interest worldwide and answer to important societal concerns. Identification of new biomarkers of exposure to tobacco smoke potentially implicated in COPD or lung carcinogenesis would allow a better observation of tobacco exposed population, thanks to screening establishment at reversible stages of pathological processes. In this study, we questioned whether cigarette smoking alters miRNA profiles of Extracellular Vesicles (EVs) present in human Broncho Alveolar Lavages (BALs), which could affect surrounding normal bronchial epithelial cells status. To this aim, BALs were carried out on 10 Smokers and 10 Non-Smokers, and EVs were isolated from the supernatants and characterized. We then compared the amount of 10 microRNAs (miRNAs) present in Smokers versus Non-Smokers BAL EVs and performed statistical analysis to discuss the biological significance by the smoking status and to evaluate BAL EV miRNAs as potential biomarkers of tobacco exposure. Finally, we tested the effects of smokers versus non-smokers EVs on human bronchial epithelial cells (BEAS-2B) to compare their influence on the cells status. Our study shows for the first time in human samples that smoking can alter lung EV profile that can influence surrounding bronchial epithelial cells.


Bronchoalveolar Lavage Fluid/cytology , Epithelial Cells/metabolism , Extracellular Vesicles/genetics , MicroRNAs/metabolism , Smoking/genetics , Adolescent , Bronchi , Cell Line , Cytokines/metabolism , Humans , RNA, Messenger/metabolism , Smoking/metabolism
12.
Environ Res ; 152: 328-335, 2017 Jan.
Article En | MEDLINE | ID: mdl-27837714

Toluene is one of the most used Volatile Organic Compounds (VOCs) in the industry despite its major health impacts. Catalytic oxidation represents an efficient remediation technique in order to reduce its emission directly at the source, but it can release by-products. To complete the classical performance assessment using dedicated analytical chemistry methods, we propose to perform an untargeted toxicological validation on two efficient catalysts. Using biological system allows integrating synergy and antagonism in toxic effects of emitted VOCs and by-products, often described in case of multi-exposure condition. Catalysts Pd/α-Al2O3 and Pd/γ-Al2O3 developed for the oxidation of toluene were both coupled to a Vitrocell® Air-Liquid Interface (ALI) system, for exposure of human A549 lung cells during 1h to toluene or to catalysts exhaust before quantification of xenobiotics metabolizing enzymes. This study validated initially the Vitrocell® as an innovative, direct and dynamic model of ALI exposure in the assessment of the performances of new catalysts, showing the presence of chemically undetected by-products. The comparison of the two catalysts showed then that fewer organic compounds metabolizing genes were induced by Pd/γ-Al2O3 in comparison to Pd/α-Al2O3, suggesting that Pd/γ-Al2O3 is more efficient for toluene total oxidation from a toxicological point of view.


Aluminum Oxide/chemistry , Catalysis , Environmental Pollutants/chemistry , Environmental Restoration and Remediation/methods , Palladium/chemistry , Toluene/chemistry , Environmental Restoration and Remediation/instrumentation , Oxidation-Reduction , Volatile Organic Compounds/chemistry
13.
Environ Pollut ; 221: 130-140, 2017 Feb.
Article En | MEDLINE | ID: mdl-27914859

Particulate Matter (PM) air pollution is one of the major concerns for environment and health. Understanding the heterogeneity and complexity of fine and ultrafine PM is a fundamental issue notably for the assessment of PM toxicological effects. The aim of this study was to evaluate mutagenicity and cytotoxicity of a multi-influenced urban site PM, with or without the ultrafine fraction. For this purpose, PM2.5-0.3 (PM with aerodynamic diameter ranging from 0.3 to 2.5 µm) and PM2.5 were collected in Dunkerque, a French coastal industrial city and were extensively characterized for their physico-chemical properties, including inorganic and organic species. In order to identify the possible sources of atmospheric pollution, specific criteria like Carbon Preference Index (CPI) and PAH characteristic ratios were investigated. Mutagenicity assays using Ames test with TA98, TA102 and YG1041 Salmonella strains with or without S9 activation were performed on native PM sample and PM organic extracts and water-soluble fractions. BEAS-2B cell viability and cell proliferation were evaluated measuring lactate dehydrogenase release and mitochondrial dehydrogenase activity after exposure to PM and their extracts. Several contributing sources were identified in PM: soil resuspension, marine emissions including sea-salt or shipping, road traffic and industrial activities, mainly related to steelmaking or petro-chemistry. Mutagenicity of PM was evidenced, especially for PM2.5, including ultrafine fraction, in relation to PAHs content and possibly nitro-aromatics compounds. PM induced cytotoxic effects at relatively high doses, while alteration of proliferation with low PM doses could be related to underlying mechanisms such as genotoxicity.


Air Pollutants/analysis , Particulate Matter/analysis , Air Pollutants/toxicity , Air Pollution/analysis , Cities , DNA Damage , Environmental Monitoring , Industry , Mutagenicity Tests , Mutagens/toxicity , Particle Size , Particulate Matter/toxicity , Photochemical Processes , Polycyclic Aromatic Hydrocarbons/analysis , Polycyclic Aromatic Hydrocarbons/toxicity , Silicones
14.
BMC Genomics ; 12: 524, 2011 Oct 25.
Article En | MEDLINE | ID: mdl-22026506

BACKGROUND: Di-(2-ethylhexyl)-phthalate (DEHP) is a commonly used plasticizer in polyvinylchloride (PVC) formulations and a potentially non-genotoxic carcinogen. The aim of this study was to identify genes whose level of expression is altered by DEHP by using a global wide-genome approach in Syrian hamster embryo (SHE) cells, a model similar to human cells regarding their responses to this type of carcinogen. With mRNA Differential Display (DD), we analysed the transcriptional regulation of SHE cells exposed to 0, 12.5, 25 and 50 µM of DEHP for 24 hrs, conditions which induced neoplastic transformation of these cells. A real-time quantitative polymerase chain reaction (qPCR) was used to confirm differential expression of genes identified by DD. RESULTS: Gene expression profiling showed 178 differentially-expressed fragments corresponding to 122 genes after tblastx comparisons, 79 up-regulated and 43 down-regulated. The genes of interest were involved in many biological pathways, including signal transduction, regulation of the cytoskeleton, xenobiotic metabolism, apoptosis, lipidogenesis, protein conformation, transport and cell cycle. We then focused particularly on genes involved in the regulation of the cytoskeleton, one of the processes occurring during carcinogenesis and in the early steps of neoplastic transformation. Twenty one cytoskeleton-related genes were studied by qPCR. The down-regulated genes were involved in focal adhesion or cell junction. The up-regulated genes were involved in the regulation of the actin cytoskeleton and this would suggest a role of cellular plasticity in the mechanism of chemical carcinogenesis. The gene expression changes identified in the present study were PPAR-independent. CONCLUSION: This study identified a set of genes whose expression is altered by DEHP exposure in mammalian embryo cells. This is the first study that elucidates the genomic changes of DEHP involved in the organization of the cytoskeleton. The latter genes may be candidates as biomarkers predictive of early events in the multistep carcinogenic process.


Cytoskeleton/drug effects , Diethylhexyl Phthalate/pharmacology , Embryo, Mammalian/drug effects , Plasticizers/pharmacology , Transcriptome , Animals , Carcinogenicity Tests , Cells, Cultured , Cricetinae , Embryo, Mammalian/cytology , Gene Expression Regulation , Kinesins/genetics , Kinesins/metabolism , Microfilament Proteins/genetics , Microfilament Proteins/metabolism , Neuropilin-2/genetics , Neuropilin-2/metabolism
...